DNA methylation signature (SAM40) identifies subgroups of the Luminal A breast cancer samples with distinct survival

نویسندگان

  • Thomas Fleischer
  • Jovana Klajic
  • Miriam Ragle Aure
  • Riku Louhimo
  • Arne V. Pladsen
  • Lars Ottestad
  • Nizar Touleimat
  • Marko Laakso
  • Ann Rita Halvorsen
  • Grethe I. Grenaker Alnæs
  • Margit L.H. Riis
  • Åslaug Helland
  • Sampsa Hautaniemi
  • Per Eystein Lønning
  • Bjørn Naume
  • Anne-Lise Børresen-Dale
  • Jörg Tost
  • Vessela N. Kristensen
چکیده

Breast cancer patients with Luminal A disease generally have a good prognosis, but among this patient group are patients with good prognosis that are currently overtreated with adjuvant chemotherapy, and also patients that have a bad prognosis and should be given more aggressive treatment. There is no available method for subclassification of this patient group. Here we present a DNA methylation signature (SAM40) that segregates Luminal A patients based on prognosis, and identify one good prognosis group and one bad prognosis group. The prognostic impact of SAM40 was validated in four independent patient cohorts. Being able to subdivide the Luminal A patients may give the two-sided benefit of identifying one subgroup that may benefit from a more aggressive treatment than what is given today, and importantly, identifying a subgroup that may benefit from less treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Luminal B breast cancer subtype displays a dicotomic epigenetic pattern

Luminal B breast tumors have aggressive clinical and biological features, and constitute the most heterogeneous molecular subtype, both clinically and molecularly. Unfortunately, the immunohistochemistry correlate of the luminal B subtype remains still imprecise, and it has now become of paramount importance to define a classification scheme capable of segregating luminal tumors into clinically...

متن کامل

Association between HIC1 and RASSF1A Promoter Hypermethylation with MTHFD1 G1958A Polymorphism and Clinicopathological Features of Breast Cancer in Iranian Patients

Background: Ras-associated domain family 1 (RASSF1A) and hypermethylated in cancer (HIC1) genes are methylated more frequently in breast cancer. Genetic factors that alter the DNA methylation levels in normal and tumor tissues could therefore influence the susceptibility to this tumor phenotype. Objective: We determined the frequency of aberrant methylation of HIC1 and RASSF1A gene promoters an...

متن کامل

A DNA methylation‐based definition of biologically distinct breast cancer subtypes

In cancer, epigenetic states are deregulated and thought to be of significance in cancer development and progression. We explored DNA methylation-based signatures in association with breast cancer subtypes to assess their impact on clinical presentation and patient prognosis. DNA methylation was analyzed using Infinium 450K arrays in 40 tumors and 17 normal breast samples, together with DNA cop...

متن کامل

Hypermethylation of E-Cadherin and Estro-gen Receptor- Gene Promoter and Its Association with Clinicopathological Features of Breast Cancer in Iranian Patients

Background: Aberrant methylation of cytosine-guanine dinucleotide islands leads to inactivation of tumor suppressor genes in breast cancer. Tumor suppressor genes are unmethylated in normal tissue and often become hypermethylated during tumor formation, leading to gene silencing. We investigated the association between E-cadherin (CDH1) and estrogen receptor-α (ESRα) gene promoter methylation a...

متن کامل

O6-Methylguanine-DNA Methyltransferase and ATP-Binding Cassette Membrane Transporter G2 Promotor Methylation: Can Predict the Response to Chemotherapy in Advanced Breast Cancer?

Background: ATP-binding cassette membrane transporter G2 (ABCG2) gene is one of transporter family and well characterized for their association with chemoresistance. Promoter methylation is a mechanism for regulation of gene expression. O6-Methyl guanine DNA methyl transferase (MGMT) gene plays a fundamental role in DNA repair. MGMT has the ability to remove alkyl adducts from DNA at the O6 pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017